Monday, January 11, 2016
Simple leader election with Kubernetes and Docker
Overview
Kubernetes simplifies the deployment and operational management of services running on clusters. However, it also simplifies the development of these services. In this post we’ll see how you can use Kubernetes to easily perform leader election in your distributed application. Distributed applications usually replicate the tasks of a service for reliability and scalability, but often it is necessary to designate one of the replicas as the leader who is responsible for coordination among all of the replicas.
Typically in leader election, a set of candidates for becoming leader is identified. These candidates all race to declare themselves the leader. One of the candidates wins and becomes the leader. Once the election is won, the leader continually “heartbeats” to renew their position as the leader, and the other candidates periodically make new attempts to become the leader. This ensures that a new leader is identified quickly, if the current leader fails for some reason.
Implementing leader election usually requires either deploying software such as ZooKeeper, etcd or Consul and using it for consensus, or alternately, implementing a consensus algorithm on your own. We will see below that Kubernetes makes the process of using leader election in your application significantly easier.
Implementing leader election in Kubernetes
The first requirement in leader election is the specification of the set of candidates for becoming the leader. Kubernetes already uses Endpoints to represent a replicated set of pods that comprise a service, so we will re-use this same object. (aside: You might have thought that we would use ReplicationControllers, but they are tied to a specific binary, and generally you want to have a single leader even if you are in the process of performing a rolling update)
To perform leader election, we use two properties of all Kubernetes API objects:
- ResourceVersions - Every API object has a unique ResourceVersion, and you can use these versions to perform compare-and-swap on Kubernetes objects
- Annotations - Every API object can be annotated with arbitrary key/value pairs to be used by clients.
Given these primitives, the code to use master election is relatively straightforward, and you can find it here. Let’s run it ourselves.
$ kubectl run leader-elector --image=gcr.io/google_containers/leader-elector:0.4 --replicas=3 -- --election=example
This creates a leader election set with 3 replicas:
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
leader-elector-inmr1 1/1 Running 0 13s
leader-elector-qkq00 1/1 Running 0 13s
leader-elector-sgwcq 1/1 Running 0 13s
To see which pod was chosen as the leader, you can access the logs of one of the pods, substituting one of your own pod’s names in place of
${pod_name}, (e.g. leader-elector-inmr1 from the above)
$ kubectl logs -f ${name}
leader is (leader-pod-name)
… Alternately, you can inspect the endpoints object directly:
‘example’ is the name of the candidate set from the above kubectl run … command
$ kubectl get endpoints example -o yaml
Now to validate that leader election actually works, in a different terminal, run:
$ kubectl delete pods (leader-pod-name)
This will delete the existing leader. Because the set of pods is being managed by a replication controller, a new pod replaces the one that was deleted, ensuring that the size of the replicated set is still three. Via leader election one of these three pods is selected as the new leader, and you should see the leader failover to a different pod. Because pods in Kubernetes have a grace period before termination, this may take 30-40 seconds.
The leader-election container provides a simple webserver that can serve on any address (e.g. http://localhost:4040). You can test this out by deleting the existing leader election group and creating a new one where you additionally pass in a –http=(host):(port) specification to the leader-elector image. This causes each member of the set to serve information about the leader via a webhook.
# delete the old leader elector group
$ kubectl delete rc leader-elector
# create the new group, note the --http=localhost:4040 flag
$ kubectl run leader-elector --image=gcr.io/google_containers/leader-elector:0.4 --replicas=3 -- --election=example --http=0.0.0.0:4040
# create a proxy to your Kubernetes api server
$ kubectl proxy
You can then access:
http://localhost:8001/api/v1/proxy/namespaces/default/pods/(leader-pod-name):4040/
And you will see:
{"name":"(name-of-leader-here)"}
Leader election with sidecars
Ok, that’s great, you can do leader election and find out the leader over HTTP, but how can you use it from your own application? This is where the notion of sidecars come in. In Kubernetes, Pods are made up of one or more containers. Often times, this means that you add sidecar containers to your main application to make up a Pod. (for a much more detailed treatment of this subject see my earlier blog post).
The leader-election container can serve as a sidecar that you can use from your own application. Any container in the Pod that’s interested in who the current master is can simply access http://localhost:4040 and they’ll get back a simple JSON object that contains the name of the current master. Since all containers in a Pod share the same network namespace, there’s no service discovery required!
For example, here is a simple Node.js application that connects to the leader election sidecar and prints out whether or not it is currently the master. The leader election sidecar sets its identifier to hostname
by default.
var http = require('http');
// This will hold info about the current master
var master = {};
// The web handler for our nodejs application
var handleRequest = function(request, response) {
response.writeHead(200);
response.end("Master is " + master.name);
};
// A callback that is used for our outgoing client requests to the sidecar
var cb = function(response) {
var data = '';
response.on('data', function(piece) { data = data + piece; });
response.on('end', function() { master = JSON.parse(data); });
};
// Make an async request to the sidecar at http://localhost:4040
var updateMaster = function() {
var req = http.get({host: 'localhost', path: '/', port: 4040}, cb);
req.on('error', function(e) { console.log('problem with request: ' + e.message); });
req.end();
};
/ / Set up regular updates
updateMaster();
setInterval(updateMaster, 5000);
// set up the web server
var www = http.createServer(handleRequest);
www.listen(8080);
Of course, you can use this sidecar from any language that you choose that supports HTTP and JSON.
Conclusion
Hopefully I’ve shown you how easy it is to build leader election for your distributed application using Kubernetes. In future installments we’ll show you how Kubernetes is making building distributed systems even easier. In the meantime, head over to Google Container Engine or kubernetes.io to get started with Kubernetes.
- Introducing kustomize; Template-free Configuration Customization for Kubernetes May 29
- Getting to Know Kubevirt May 22
- Gardener - The Kubernetes Botanist May 17
- Docs are Migrating from Jekyll to Hugo May 5
- Announcing Kubeflow 0.1 May 4
- Current State of Policy in Kubernetes May 2
- Developing on Kubernetes May 1
- Zero-downtime Deployment in Kubernetes with Jenkins Apr 30
- Kubernetes Community - Top of the Open Source Charts in 2017 Apr 25
- Local Persistent Volumes for Kubernetes Goes Beta Apr 13
- Container Storage Interface (CSI) for Kubernetes Goes Beta Apr 10
- Fixing the Subpath Volume Vulnerability in Kubernetes Apr 4
- Principles of Container-based Application Design Mar 15
- Expanding User Support with Office Hours Mar 14
- How to Integrate RollingUpdate Strategy for TPR in Kubernetes Mar 13
- Apache Spark 2.3 with Native Kubernetes Support Mar 6
- Kubernetes: First Beta Version of Kubernetes 1.10 is Here Mar 2
- Reporting Errors from Control Plane to Applications Using Kubernetes Events Jan 25
- Core Workloads API GA Jan 15
- Introducing client-go version 6 Jan 12
- Extensible Admission is Beta Jan 11
- Introducing Container Storage Interface (CSI) Alpha for Kubernetes Jan 10
- Kubernetes v1.9 releases beta support for Windows Server Containers Jan 9
- Five Days of Kubernetes 1.9 Jan 8
- Introducing Kubeflow - A Composable, Portable, Scalable ML Stack Built for Kubernetes Dec 21
- Kubernetes 1.9: Apps Workloads GA and Expanded Ecosystem Dec 15
- Using eBPF in Kubernetes Dec 7
- PaddlePaddle Fluid: Elastic Deep Learning on Kubernetes Dec 6
- Autoscaling in Kubernetes Nov 17
- Certified Kubernetes Conformance Program: Launch Celebration Round Up Nov 16
- Kubernetes is Still Hard (for Developers) Nov 15
- Securing Software Supply Chain with Grafeas Nov 3
- Containerd Brings More Container Runtime Options for Kubernetes Nov 2
- Kubernetes the Easy Way Nov 1
- Enforcing Network Policies in Kubernetes Oct 30
- Using RBAC, Generally Available in Kubernetes v1.8 Oct 28
- It Takes a Village to Raise a Kubernetes Oct 26
- kubeadm v1.8 Released: Introducing Easy Upgrades for Kubernetes Clusters Oct 25
- Five Days of Kubernetes 1.8 Oct 24
- Introducing Software Certification for Kubernetes Oct 19
- Request Routing and Policy Management with the Istio Service Mesh Oct 10
- Kubernetes Community Steering Committee Election Results Oct 5
- Kubernetes 1.8: Security, Workloads and Feature Depth Sep 29
- Kubernetes StatefulSets & DaemonSets Updates Sep 27
- Introducing the Resource Management Working Group Sep 21
- Windows Networking at Parity with Linux for Kubernetes Sep 8
- Kubernetes Meets High-Performance Computing Aug 22
- High Performance Networking with EC2 Virtual Private Clouds Aug 11
- Kompose Helps Developers Move Docker Compose Files to Kubernetes Aug 10
- Happy Second Birthday: A Kubernetes Retrospective Jul 28
- How Watson Health Cloud Deploys Applications with Kubernetes Jul 14
- Kubernetes 1.7: Security Hardening, Stateful Application Updates and Extensibility Jun 30
- Draft: Kubernetes container development made easy May 31
- Managing microservices with the Istio service mesh May 31
- Kubespray Ansible Playbooks foster Collaborative Kubernetes Ops May 19
- Kubernetes: a monitoring guide May 19
- Dancing at the Lip of a Volcano: The Kubernetes Security Process - Explained May 18
- How Bitmovin is Doing Multi-Stage Canary Deployments with Kubernetes in the Cloud and On-Prem Apr 21
- RBAC Support in Kubernetes Apr 6
- Configuring Private DNS Zones and Upstream Nameservers in Kubernetes Apr 4
- Advanced Scheduling in Kubernetes Mar 31
- Scalability updates in Kubernetes 1.6: 5,000 node and 150,000 pod clusters Mar 30
- Five Days of Kubernetes 1.6 Mar 29
- Dynamic Provisioning and Storage Classes in Kubernetes Mar 29
- Kubernetes 1.6: Multi-user, Multi-workloads at Scale Mar 28
- The K8sPort: Engaging Kubernetes Community One Activity at a Time Mar 24
- Deploying PostgreSQL Clusters using StatefulSets Feb 24
- Containers as a Service, the foundation for next generation PaaS Feb 21
- Inside JD.com's Shift to Kubernetes from OpenStack Feb 10
- Run Deep Learning with PaddlePaddle on Kubernetes Feb 8
- Highly Available Kubernetes Clusters Feb 2
- Running MongoDB on Kubernetes with StatefulSets Jan 30
- Fission: Serverless Functions as a Service for Kubernetes Jan 30
- How we run Kubernetes in Kubernetes aka Kubeception Jan 20
- Scaling Kubernetes deployments with Policy-Based Networking Jan 19
- A Stronger Foundation for Creating and Managing Kubernetes Clusters Jan 12
- Kubernetes UX Survey Infographic Jan 9
- Kubernetes supports OpenAPI Dec 23
- Cluster Federation in Kubernetes 1.5 Dec 22
- Windows Server Support Comes to Kubernetes Dec 21
- StatefulSet: Run and Scale Stateful Applications Easily in Kubernetes Dec 20
- Introducing Container Runtime Interface (CRI) in Kubernetes Dec 19
- Five Days of Kubernetes 1.5 Dec 19
- Kubernetes 1.5: Supporting Production Workloads Dec 13
- From Network Policies to Security Policies Dec 8
- Kompose: a tool to go from Docker-compose to Kubernetes Nov 22
- Kubernetes Containers Logging and Monitoring with Sematext Nov 18
- Visualize Kubelet Performance with Node Dashboard Nov 17
- CNCF Partners With The Linux Foundation To Launch New Kubernetes Certification, Training and Managed Service Provider Program Nov 8
- Modernizing the Skytap Cloud Micro-Service Architecture with Kubernetes Nov 7
- Bringing Kubernetes Support to Azure Container Service Nov 7
- Tail Kubernetes with Stern Oct 31
- Introducing Kubernetes Service Partners program and a redesigned Partners page Oct 31
- How We Architected and Run Kubernetes on OpenStack at Scale at Yahoo! JAPAN Oct 24
- Building Globally Distributed Services using Kubernetes Cluster Federation Oct 14
- Helm Charts: making it simple to package and deploy common applications on Kubernetes Oct 10
- Dynamic Provisioning and Storage Classes in Kubernetes Oct 7
- How we improved Kubernetes Dashboard UI in 1.4 for your production needs Oct 3
- How we made Kubernetes insanely easy to install Sep 28
- How Qbox Saved 50% per Month on AWS Bills Using Kubernetes and Supergiant Sep 27
- Kubernetes 1.4: Making it easy to run on Kubernetes anywhere Sep 26
- High performance network policies in Kubernetes clusters Sep 21
- Creating a PostgreSQL Cluster using Helm Sep 9
- Deploying to Multiple Kubernetes Clusters with kit Sep 6
- Cloud Native Application Interfaces Sep 1
- Security Best Practices for Kubernetes Deployment Aug 31
- Scaling Stateful Applications using Kubernetes Pet Sets and FlexVolumes with Datera Elastic Data Fabric Aug 29
- SIG Apps: build apps for and operate them in Kubernetes Aug 16
- Kubernetes Namespaces: use cases and insights Aug 16
- Create a Couchbase cluster using Kubernetes Aug 15
- Challenges of a Remotely Managed, On-Premises, Bare-Metal Kubernetes Cluster Aug 2
- Why OpenStack's embrace of Kubernetes is great for both communities Jul 26
- The Bet on Kubernetes, a Red Hat Perspective Jul 21
- Happy Birthday Kubernetes. Oh, the places you’ll go! Jul 21
- A Very Happy Birthday Kubernetes Jul 21
- Bringing End-to-End Kubernetes Testing to Azure (Part 2) Jul 18
- Steering an Automation Platform at Wercker with Kubernetes Jul 15
- Dashboard - Full Featured Web Interface for Kubernetes Jul 15
- Cross Cluster Services - Achieving Higher Availability for your Kubernetes Applications Jul 14
- Citrix + Kubernetes = A Home Run Jul 14
- Thousand Instances of Cassandra using Kubernetes Pet Set Jul 13
- Stateful Applications in Containers!? Kubernetes 1.3 Says “Yes!” Jul 13
- Kubernetes in Rancher: the further evolution Jul 12
- Autoscaling in Kubernetes Jul 12
- rktnetes brings rkt container engine to Kubernetes Jul 11
- Minikube: easily run Kubernetes locally Jul 11
- Five Days of Kubernetes 1.3 Jul 11
- Updates to Performance and Scalability in Kubernetes 1.3 -- 2,000 node 60,000 pod clusters Jul 7
- Kubernetes 1.3: Bridging Cloud Native and Enterprise Workloads Jul 6
- Container Design Patterns Jun 21
- The Illustrated Children's Guide to Kubernetes Jun 9
- Bringing End-to-End Kubernetes Testing to Azure (Part 1) Jun 6
- Hypernetes: Bringing Security and Multi-tenancy to Kubernetes May 24
- CoreOS Fest 2016: CoreOS and Kubernetes Community meet in Berlin (& San Francisco) May 3
- Introducing the Kubernetes OpenStack Special Interest Group Apr 22
- SIG-UI: the place for building awesome user interfaces for Kubernetes Apr 20
- SIG-ClusterOps: Promote operability and interoperability of Kubernetes clusters Apr 19
- SIG-Networking: Kubernetes Network Policy APIs Coming in 1.3 Apr 18
- How to deploy secure, auditable, and reproducible Kubernetes clusters on AWS Apr 15
- Container survey results - March 2016 Apr 8
- Adding Support for Kubernetes in Rancher Apr 8
- Configuration management with Containers Apr 4
- Using Deployment objects with Kubernetes 1.2 Apr 1
- Kubernetes 1.2 and simplifying advanced networking with Ingress Mar 31
- Using Spark and Zeppelin to process big data on Kubernetes 1.2 Mar 30
- Building highly available applications using Kubernetes new multi-zone clusters (a.k.a. 'Ubernetes Lite') Mar 29
- AppFormix: Helping Enterprises Operationalize Kubernetes Mar 29
- How container metadata changes your point of view Mar 28
- Five Days of Kubernetes 1.2 Mar 28
- 1000 nodes and beyond: updates to Kubernetes performance and scalability in 1.2 Mar 28
- Scaling neural network image classification using Kubernetes with TensorFlow Serving Mar 23
- Kubernetes 1.2: Even more performance upgrades, plus easier application deployment and management Mar 17
- Kubernetes in the Enterprise with Fujitsu’s Cloud Load Control Mar 11
- ElasticBox introduces ElasticKube to help manage Kubernetes within the enterprise Mar 11
- State of the Container World, February 2016 Mar 1
- Kubernetes Community Meeting Notes - 20160225 Mar 1
- KubeCon EU 2016: Kubernetes Community in London Feb 24
- Kubernetes Community Meeting Notes - 20160218 Feb 23
- Kubernetes Community Meeting Notes - 20160211 Feb 16
- ShareThis: Kubernetes In Production Feb 11
- Kubernetes Community Meeting Notes - 20160204 Feb 9
- Kubernetes Community Meeting Notes - 20160128 Feb 2
- State of the Container World, January 2016 Feb 1
- Kubernetes Community Meeting Notes - 20160121 Jan 28
- Kubernetes Community Meeting Notes - 20160114 Jan 28
- Why Kubernetes doesn’t use libnetwork Jan 14
- Simple leader election with Kubernetes and Docker Jan 11
- Creating a Raspberry Pi cluster running Kubernetes, the installation (Part 2) Dec 22
- Managing Kubernetes Pods, Services and Replication Controllers with Puppet Dec 17
- How Weave built a multi-deployment solution for Scope using Kubernetes Dec 12
- Creating a Raspberry Pi cluster running Kubernetes, the shopping list (Part 1) Nov 25
- Monitoring Kubernetes with Sysdig Nov 19
- One million requests per second: Dependable and dynamic distributed systems at scale Nov 11
- Kubernetes 1.1 Performance upgrades, improved tooling and a growing community Nov 9
- Kubernetes as Foundation for Cloud Native PaaS Nov 3
- Some things you didn’t know about kubectl Oct 28
- Kubernetes Performance Measurements and Roadmap Sep 10
- Using Kubernetes Namespaces to Manage Environments Aug 28
- Weekly Kubernetes Community Hangout Notes - July 31 2015 Aug 4
- The Growing Kubernetes Ecosystem Jul 24
- Weekly Kubernetes Community Hangout Notes - July 17 2015 Jul 23
- Strong, Simple SSL for Kubernetes Services Jul 14
- Weekly Kubernetes Community Hangout Notes - July 10 2015 Jul 13
- Announcing the First Kubernetes Enterprise Training Course Jul 8
- Kubernetes 1.0 Launch Event at OSCON Jul 2
- How did the Quake demo from DockerCon Work? Jul 2
- The Distributed System ToolKit: Patterns for Composite Containers Jun 29
- Slides: Cluster Management with Kubernetes, talk given at the University of Edinburgh Jun 26
- Cluster Level Logging with Kubernetes Jun 11
- Weekly Kubernetes Community Hangout Notes - May 22 2015 Jun 2
- Kubernetes on OpenStack May 19
- Weekly Kubernetes Community Hangout Notes - May 15 2015 May 18
- Docker and Kubernetes and AppC May 18
- Kubernetes Release: 0.17.0 May 15
- Resource Usage Monitoring in Kubernetes May 12
- Weekly Kubernetes Community Hangout Notes - May 1 2015 May 11
- Kubernetes Release: 0.16.0 May 11
- AppC Support for Kubernetes through RKT May 4
- Weekly Kubernetes Community Hangout Notes - April 24 2015 Apr 30
- Borg: The Predecessor to Kubernetes Apr 23
- Kubernetes and the Mesosphere DCOS Apr 22
- Weekly Kubernetes Community Hangout Notes - April 17 2015 Apr 17
- Kubernetes Release: 0.15.0 Apr 16
- Introducing Kubernetes API Version v1beta3 Apr 16
- Weekly Kubernetes Community Hangout Notes - April 10 2015 Apr 11
- Faster than a speeding Latte Apr 6
- Weekly Kubernetes Community Hangout Notes - April 3 2015 Apr 4
- Paricipate in a Kubernetes User Experience Study Mar 31
- Weekly Kubernetes Community Hangout Notes - March 27 2015 Mar 28
- Kubernetes Gathering Videos Mar 23
- Welcome to the Kubernetes Blog! Mar 20